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ABSTRACT: Let 0 : ( ), ( ), 0C x f s y g s z= = = , ,a s b! !  be a parameterized curve in the 

xy-plane, where f and g are functions for which '( ) ''( ) '( ) ''( ) 0f t g t g t f t! >  (i.e., viewed 

from the positive z-axis, the graph of 
0
C  turns to the left).   Let ( )( ), ( ),0P f t g t=  be a 

point on 
0
C .  (Of course, as the value of t changes, the point P moves along the graph of 

0
C .  In this paper, I refer to s as the object parameter and t as the parameter of 

animation.)  Let C!  be the curve in 3-space which has the following properties: 

 

1. C!  is obtained by a rigid transformation of 
0
C , 

2. C!  and 
0
C  share a tangent vector v at the point P, which lies in the xy-plane, and 

3. C!  lies in a plane !  whose normal vector makes an angle !  with that of the xy-

plane, 0 2! "< < . 

 

Then as P moves along 
0
C , the curve C!  will roll along the graph of 

0
C ; I call the type 

of rolling envisioned here “the è - rolling of C!  along 
0
C .”  In the first part of this paper, 

I obtain the parametric equations for animating the è - rolling of C!  along 
0
C  (Theorem 

1).  In the second part, I apply the result to the special case: 
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0
C  is the parabola: 

2

, , 0
4

s
x s y z

p
= = = , where 0p >  is a constant. 

 

I then find the trajectory of focus of the rolling curve C! , and find a surprising 

connection between parabolas and hyperbolas (Theorem 2).  In the third and final part, I 

state additional results that can be obtained when (with ! "= ) the theorems and 

techniques discussed in this paper are applied to ellipses (Theorem 3). 

 

 

Part I: Parameterizing the -! rolling of C!  along 
0
C . 

Theorem 1: Let 0 : ( ), ( ), 0C x f s y g s z= = = , ,a s b! !  be a parameterized curve in the 

xy-plane, where f and g are functions for which '( ) ''( ) '( ) ''( ) 0f t g t g t f t! >  (i.e., viewed 

from the positive z-axis, the graph of 
0
C  turns to the left).   Let ( )( ), ( ),0P f t g t=  be a 

point on 
0
C .  Then, for every given value of , 0 2 ,! ! "< <  parametric equations 

 

( , ), ( , ), ( , ),X X s t Y Y s t Z Z s t= = =  

 

where , ,a s t b! ! can be found for animating the -! rolling of C!  along 
0
C . 

 

Proof: To find parametric equations for animating the -! rolling of C!  along 
0
C , we 

proceed in steps.  Homogeneous matrices and homogeneous coordinates are used to 

facilitate the required computations, as they allow one to represent translations of curves 

in 3-space in terms of matrix multiplication. 

 

Step 1: Define 
0
C .  As a 4x1 column matrix, the homogeneous coordinates of 

0
C  are 

 

    0

( )

( )

0

1

f s

g s
C

! "
# $
# $=
# $
# $
% &

.      (1) 
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Step 2: Translate 
0
C  so that P lies at the origin.  Let T1 be the translation matrix that 

does this.  Then 

 

    

1 0 0 ( )

0 1 0 ( )
1 .

0 0 1 0

0 0 0 1

f t

g t
T

!" #
$ %!$ %=
$ %
$ %
& '

    (2) 

 

Step 3: Let !  be the angle that the tangent vector v at P makes with the positive x-axis.  

Rotate the translated curve around the z-axis through the angle !" .  Let R1 be the 

rotation matrix that does this.  Then 

 

  

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2 2 2 2

2 2 2 2

'( ) '( )
0 0

'( ) '( ) '( ) '( )

'( ) '( )
0 01

'( ) '( ) '( ) '( )

0 0 1 0

0 0 0 1

f t g t

f t g t f t g t

g t f t
R

f t g t f t g t

! "
# $

+ +# $
# $

%# $=
# $+ +
# $
# $
# $
# $& '

.  (3) 

 

Step 4: Now rotate the curve around the x-axis through an angle !  ( )0 2! "< < .  

Let R2 be the rotation matrix that does this.  Then 

 

    

1 0 0 0

0 cos sin 0
2 .

0 sin cos 0

0 0 0 1

R
! !

! !

" #
$ %&$ %=
$ %
$ %
' (

   (4) 

 

Step 5: Now rotate the curve around the z-axis through the angle ! .  If R3 is the 

matrix that does this, then 1
3 1 :R R

!
=  
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[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2 2 2 2

2 2 2 2

'( ) '( )
0 0

'( ) '( ) '( ) '( )

'( ) '( )
0 03

'( ) '( ) '( ) '( )

0 0 1 0

0 0 0 1

f t g t

f t g t f t g t

g t f t
R

f t g t f t g t

!" #
$ %

+ +$ %
$ %
$ %=
$ %+ +
$ %
$ %
$ %
$ %& '

.  (5) 

 

Step 6: Translate the curve so that the point at the origin moves back to P.  If T2 is 

the matrix that does this, then 1
2 1 :T T

!
=  

 

    

1 0 0 ( )

0 1 0 ( )
2 .

0 0 1 0

0 0 0 1

f t

g t
T

! "
# $
# $=
# $
# $
% &

    (6) 

 

Step 7: Finally, for a given value for !  (0 2! "< < ), parametric equations (X, Y, Z) 

for animating the ! " rolling of C!  along 
0
C  are given by the first three rows of the 

4x1 matrix C! , where 

 

    
0

2 3 2 1 1 .C T R R R T C! = " " " " "     (7) 

 

Taking the product in (7) (I used Maple 10 to assist in this) and letting X, Y and Z be 

defined by its first, second and third rows, respectively, we find that, for any given value 

of , 0 2 ,! ! "< <  

 

( , )X s t

[ ] [ ]
[ ] [ ]{ 2 2

2 2

1
( ) '( ) ( ) '( ) cos '( ) '( ) ( ) '( ) '( ) ( ) cos

'( ) '( )
f s f t f s g t f t g t g s f t g t g s

f t g t
! != " + + #

+
 

   [ ] [ ] }2 2
( ) '( ) cos '( ) '( ) ( ) '( ) '( ) ( ) cos ( ) '( )f t g t f t g t g t f t g t g t f t g t! !" " + + , 
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( , )Y s t

[ ] [ ]
{ [ ] [ ]

2 2

2 2

1
'( ) '( ) ( ) '( ) '( ) ( ) cos ( ) '( ) ( ) '( ) cos

'( ) '( )
f t g t f s f t g t f s g s g t g s f t

f t g t
! != " # + +

+
 

 

   [ ] [ ] }2 2
'( ) '( ) ( ) '( ) '( ) ( ) cos ( ) '( ) cos ( ) '( )f t g t f t f t g t f t g t f t g t f t! !" + " +  

and 

 

( , )Z s t  [ ]

[ ] [ ]
2 2

sin '( ) ( ) '( ) ( ) '( ) ( ) '( ) ( )

'( ) '( )

f t g s g t f s g t f t f t g t

f t g t

! " + "
=

+
, 

 

where , .a s t b! !   This completes the proof of Theorem 1. 

 

Part II: The special case: 
0
C  is a parabola. 

We now apply Theorem 1 to the special case where 
0
C  is the parabola: 2

4x py=  and z 

= 0, where 0p >  is constant.  Parametric equations for 
0
C  are 

 

    
2

( ) , ( ) , 0,
4

s
x f s s y g s z

p
= = = = =    (8) 

 

where s!" < < " .  Since '( ) 1f t =  and '( )
2

t
g t

p
= , then from (7), it can be shown that 

parametric equations (X, Y, Z) for animating the ! " rolling of the parabola C!  along 
0
C  

are 

 

            ( , )X s t

( )

2 2 2 2 3 3

2 2

8 2 cos cos cos
,

2 4

sp st ts ts t t

p t

! ! !+ + " " +
=

+
 

 

  ( , )Y s t

( )

2 2 2 2 2 2 2 2 2 2

2 2

8 8 cos 4 cos 4 4 cos
,

4 4

p ts p ts s t s p t p t p

p p t

! ! !" + + " +
=

+
 (9) 
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and 

  ( , )Z s t
( )2 2

2 2

2 sin
,

2 4

s ts t

p t

!" +
=

+
 

 

where ,s t!" < < "  and 0p >  is constant.  Figure 1 below illustrates the result (with 

6

!
" =  and 

2

!
" = ). 

 

 
 

Note: If we specify a value for s (and, hence, a fixed point on C! ),  then as C!  rolls 

along 
0
C , Equations (9) provide the parametric equations of the trajectory of that fixed 

point on the rolling curve.  We are now in a position to prove the following theorem. 

 

Theorem 2: Let 
0
C  be the parabola: 2

4x py=  and z = 0, where 0p >  is constant, and 

let C!  be the parabolic curve that ! " rolls along C! , where 0 2! "< <  is fixed.  If F is 

the focus of C! , then the trajectory of F is 
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(i) a branch of the hyperbola:  

 

( )

2 2

2

22
sin 1 cos

z x
p

! !
" =

"
  in the plane: cosy p != , if ! "# , 

or 

 

(ii) the directrix of 
0
C , if ! "= . 

 

Proof: Let L and R be the endpoints of the latus rectum of the rolling parabola, C! .  

Then 

 

            F ( )
1

2
L R= +  

 

    
( 2 , ) (2 , )

1
( 2 , ) (2 , ) .

2
( 2 , ) (2 , )

X p t X p t

Y p t Y p t

Z p t Z p t

! "#$ % $ %
& '( ) ( )

= # +& '( ) ( )
& '( ) ( )#* + * +, -

   (10) 

 

Using the formulas in (9), it can be shown that (10) simplifies to 

 

            F 

( )

2 2

1 cos

2

cos

4 sin

2

t

p

p t

!

!

!

" #$
% &
% &
% &=
% &
% &+
% &
' (

, 

 

and, hence, parametric equations (x, y, z) for the trajectory of the focus of the rolling 

parabola are 
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            x 
( )1 cos

2

t !"
= ,      (11) 

 

            y cosp != ,      (12) 

and 

 

            z 
2 2

4 sin

2

p t !+
= ,     (13) 

 

where t!" < < "  and p > 0 and 0 2! "< <  are constants.  From (12), the trajectory of F 

lies in the plane: cosy p != .  We now eliminate the parameter t from (11) and (13).  

From (11), 

 

   
2 1 cos

t x

!
=

"
 

( )

2 2

2
4 1 cos

t x

!
" =

#
,      (14) 

 

while from (13), we have 

 

     
2

2
sin

4

t
z p != +  

2 2

2

2
sin 4

z t
p

!
" # = ,    (15) 

 

, if ! "# .  From (14) and (15), we see that the trajectory of F is along a branch of the 

hyperbola 

 

    
( )

2 2

2

22
,

sin 1 cos

z x
p

! !
" =

"
    (16) 

 

if ! "# .  More specifically, from (13) we see that it will be the top branch of (16), if 

0 ! "< < , and the bottom branch, if 2 .! " !< <   On the other hand, if ! "= , then from 

(11), (12), and (13), the trajectory of the focus F is given by 
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    , , 0x t y p z= = ! = ,     (17) 

 

where t!" < < "  and p > 0 is constant.  The equations in (17) are, however, just 

parametric equations for the directrix of 
0
.C   This completes the proof of Theorem 2. 

 

Figure 2 below illustrates the result (with 
2

!
" = ). 

 
In Figure 3 below, we view Figure 2 from a point on the negative y-axis. 
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In Figure 4 below, we view Figure 2 from a point on the positive z-axis. 
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Note: Not surprisingly, in Figure 4 the projection of the rolling parabola 
/ 2

C!  into the 

xy-plane is (part of the) tangent line to 
0
C  at the point P.  In Figure 5 and Figure 6 

below, we show the graphs of 17 trajectories of the foci (one being the directrix of 
0
C ). 
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Part III: Statement of an additional result 
On February 23, I presented the paper, “Rolling a Parameterized Curve Along its 

Reflection,” at the ArizMATYC Spring 2007 Meeting, at Glendale Community College.  

I now recognize that, within the framework of "! " rolling,” the contents of that paper are 

merely examples of "! "Rolling of a Planar Curve Along Itself.”  A main result from 

that paper (merely restated here) is: 

 

Theorem 3: Let 
0
C  be the ellipse having parametric equations 

 

   ( ) cos , ( ) sin , 0x f s a s y g s b s z= = = = = , 

 

where 0 2s !" " , and a, b are constants, with 0 < b < a.  Taking ! "= , let C!  be the 

ellipse that “! " rolls” around 
0
.C   If 1( ,0)f c!  and 2 ( ,0)f c  are the foci of 

0
,C  then the 

foci of C!  are (initially) at 1 (2 ,0)F a c= !  and 2 (2 ,0)F a c= + , respectively.  If C!  

! " rolls around 
0
C  (without sliding), the trajectories of the foci 

1
F  and 

2
F  of C!  are 

circles of radius r = 2a, centered at the foci 
1
f  and 

2
,f respectively.  Specifically, 

  

1
F  has trajectory: 2 2 2( ) 4x c y a+ + =  and 

2
F  has trajectory: 2 2 2( ) 4 .x c y a! + =  

 

Figure 7 below (with a = 5 and b = 3) is an illustration of Theorem 3. 
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Final remarks 
The theorems proved in this paper began, as do all theorems, as mere conjectures.  But, 

whence these conjectures?  They entered my mind as a result of posing the following 

graphical/animation problem: “How could I use my computer algebra system (Maple 

10) to animate the ! " rolling of one curve along itself?”  Having first solved the problem 

for ! "=  (“rolling the reflection of a planar curve along itself”), then for 
2

!
" =  

(“orthogonal rolling of a planar curve along itself”), I finally solved the general problem 

for any value of ,!  0 2! "< <  (Theorem 1).  Having already been surprised at the fact 

that, when a parabola “orthogonally rolls” along itself, the trajectory of its focus is along 

the branch of a hyperbola, I decided to investigate what happens in the general case.  I 

was amazed when I discovered that the same was true in general (Theorem 2)!  

 


