è -Rolling of a Planar Curve Along Itself and a Connection Between Parabolas and Hyperbolas

by
Frank J. Attanucci
Mathematics Department
Scottsdale Community College
Scottsdale, AZ 85256
frank.attanucci@sccmail.maricopa.edu

Abstract

Let $C_{0}: x=f(s), y=g(s), z=0, a \leq s \leq b$, be a parameterized curve in the $x y$-plane, where f and g are functions for which $f^{\prime}(t) g^{\prime \prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)>0$ (i.e., viewed from the positive z-axis, the graph of C_{0} turns to the left $)$. Let $P=(f(t), g(t), 0)$ be a point on C_{0}. (Of course, as the value of t changes, the point P moves along the graph of C_{0}. In this paper, I refer to s as the object parameter and t as the parameter of animation.) Let C_{θ} be the curve in 3-space which has the following properties:

1. C_{θ} is obtained by a rigid transformation of C_{0},
2. C_{θ} and C_{0} share a tangent vector \mathbf{v} at the point P, which lies in the $x y$-plane, and
3. C_{θ} lies in a plane Π whose normal vector makes an angle θ with that of the $x y$ plane, $0<\theta<2 \pi$.

Then as P moves along C_{0}, the curve C_{θ} will roll along the graph of C_{0}; I call the type of rolling envisioned here "the è - rolling of C_{θ} along C_{0}." In the first part of this paper, I obtain the parametric equations for animating the è - rolling of C_{θ} along C_{0} (Theorem 1). In the second part, I apply the result to the special case:
C_{0} is the parabola: $x=s, y=\frac{s^{2}}{4 p}, z=0$, where $p>0$ is a constant.

I then find the trajectory of focus of the rolling curve C_{θ}, and find a surprising connection between parabolas and hyperbolas (Theorem 2). In the third and final part, I state additional results that can be obtained when (with $\theta=\pi$) the theorems and techniques discussed in this paper are applied to ellipses (Theorem 3).

Part I: Parameterizing the θ-rolling of C_{θ} along C_{0}.

Theorem 1: Let $C_{0}: x=f(s), y=g(s), z=0, a \leq s \leq b$, be a parameterized curve in the $x y$-plane, where f and g are functions for which $f^{\prime}(t) g^{\prime \prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)>0$ (i.e., viewed from the positive z-axis, the graph of C_{0} turns to the left). Let $P=(f(t), g(t), 0)$ be a point on C_{0}. Then, for every given value of $\theta, 0<\theta<2 \pi$, parametric equations

$$
X=X(s, t), Y=Y(s, t), Z=Z(s, t),
$$

where $a \leq s, t \leq b$, can be found for animating the θ-rolling of C_{θ} along C_{0}.

Proof: To find parametric equations for animating the θ - rolling of C_{θ} along C_{0}, we proceed in steps. Homogeneous matrices and homogeneous coordinates are used to facilitate the required computations, as they allow one to represent translations of curves in 3-space in terms of matrix multiplication.

Step 1: Define C_{0}. As a 4 x 1 column matrix, the homogeneous coordinates of C_{0} are

$$
C_{0}=\left[\begin{array}{c}
f(s) \tag{1}\\
g(s) \\
0 \\
1
\end{array}\right]
$$

Step 2: Translate C_{0} so that \boldsymbol{P} lies at the origin. Let $T l$ be the translation matrix that does this. Then

$$
T 1=\left[\begin{array}{cccc}
1 & 0 & 0 & -f(t) \tag{2}\\
0 & 1 & 0 & -g(t) \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Step 3: Let α be the angle that the tangent vector \mathbf{v} at P makes with the positive x-axis. Rotate the translated curve around the \boldsymbol{z}-axis through the angle $-\alpha$. Let $R 1$ be the rotation matrix that does this. Then

$$
R 1=\left[\begin{array}{cccc}
\frac{f^{\prime}(t)}{\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}} & \frac{g^{\prime}(t)}{\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}} & 0 & 0 \tag{3}\\
\frac{-g^{\prime}(t)}{\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}} & \frac{f^{\prime}(t)}{\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Step 4: Now rotate the curve around the \boldsymbol{x}-axis through an angle $\theta(0<\theta<2 \pi)$. Let $R 2$ be the rotation matrix that does this. Then

$$
R 2=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{4}\\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Step 5: Now rotate the curve around the \boldsymbol{z}-axis through the angle α. If $R 3$ is the matrix that does this, then $R 3=R 1^{-1}$:

$$
R 3=\left[\begin{array}{cccc}
\frac{f^{\prime}(t)}{\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}} & \frac{-g^{\prime}(t)}{\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}} & 0 & 0 \tag{5}\\
\frac{g^{\prime}(t)}{\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}} & \frac{f^{\prime}(t)}{\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Step 6: Translate the curve so that the point at the origin moves back to P. If $T 2$ is the matrix that does this, then $T 2=T 1^{-1}$:

$$
T 2=\left[\begin{array}{cccc}
1 & 0 & 0 & f(t) \tag{6}\\
0 & 1 & 0 & g(t) \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Step 7: Finally, for a given value for $\theta(0<\theta<2 \pi)$, parametric equations ($\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$) for animating the θ - rolling of C_{θ} along C_{0} are given by the first three rows of the 4×1 matrix C_{θ}, where

$$
\begin{equation*}
C_{\theta}=T 2 \cdot R 3 \cdot R 2 \cdot R 1 \cdot T 1 \cdot C_{0} . \tag{7}
\end{equation*}
$$

Taking the product in (7) (I used Maple 10 to assist in this) and letting X, Y and Z be defined by its first, second and third rows, respectively, we find that, for any given value of $\theta, 0<\theta<2 \pi$,

$$
\begin{aligned}
& X(s, t)= \frac{1}{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} \cdot\left\{f(s)\left[f^{\prime}(t)\right]^{2}+f(s)\left[g^{\prime}(t)\right]^{2} \cos \theta+f^{\prime}(t) g^{\prime}(t) g(s)-f^{\prime}(t) g^{\prime}(t) g(s) \cos \theta\right. \\
&\left.-f(t)\left[g^{\prime}(t)\right]^{2} \cos \theta-f^{\prime}(t) g^{\prime}(t) g(t)+f^{\prime}(t) g^{\prime}(t) g(t) \cos \theta+f(t)\left[g^{\prime}(t)\right]^{2}\right\},
\end{aligned}
$$

$$
\begin{array}{r}
Y(s, t)=\frac{1}{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} \cdot\left\{f^{\prime}(t) g^{\prime}(t) f(s)-f^{\prime}(t) g^{\prime}(t) f(s) \cos \theta+g(s)\left[g^{\prime}(t)\right]^{2}+g(s)\left[f^{\prime}(t)\right]^{2} \cos \theta\right. \\
\left.-f^{\prime}(t) g^{\prime}(t) f(t)+f^{\prime}(t) g^{\prime}(t) f(t) \cos \theta-g(t)\left[f^{\prime}(t)\right]^{2} \cos \theta+g(t)\left[f^{\prime}(t)\right]^{-2}\right\}
\end{array}
$$

and
$Z(s, t)=\frac{\sin \theta\left[f^{\prime}(t) g(s)-g^{\prime}(t) f(s)+g^{\prime}(t) f(t)-f^{\prime}(t) g(t)\right]}{\sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}}}$,
where $a \leq s, t \leq b$. This completes the proof of Theorem 1.

Part II: The special case: C_{0} is a parabola.

We now apply Theorem 1 to the special case where C_{0} is the parabola: $x^{2}=4 p y$ and z $=0$, where $p>0$ is constant. Parametric equations for C_{0} are

$$
\begin{equation*}
x=f(s)=s, y=g(s)=\frac{s^{2}}{4 p}, z=0 \tag{8}
\end{equation*}
$$

where $-\infty<s<\infty$. Since $f^{\prime}(t)=1$ and $g^{\prime}(t)=\frac{t}{2 p}$, then from (7), it can be shown that parametric equations (X, Y, Z) for animating the θ - rolling of the parabola C_{θ} along C_{0} are

$$
\begin{align*}
& X(s, t)=\frac{8 s p^{2}+2 s t^{2} \cos \theta+t s^{2}-t s^{2} \cos \theta-t^{3} \cos \theta+t^{3}}{2\left(4 p^{2}+t^{2}\right)} \\
& Y(s, t)=\frac{8 p^{2} t s-8 p^{2} t s \cos \theta+s^{2} t^{2}+4 s^{2} p^{2} \cos \theta-4 t^{2} p^{2}+4 t^{2} p^{2} \cos \theta}{4 p\left(4 p^{2}+t^{2}\right)} \tag{9}
\end{align*}
$$

and

$$
Z(s, t)=\frac{\left(s^{2}-2 t s+t^{2}\right) \sin \theta}{2 \sqrt{4 p^{2}+t^{2}}}
$$

where $-\infty<s, t<\infty$ and $p>0$ is constant. Figure 1 below illustrates the result (with $\theta=\frac{\pi}{6}$ and $\left.\theta=\frac{\pi}{2}\right)$.

Note: If we specify a value for s (and, hence, a fixed point on C_{θ}), then as C_{θ} rolls along C_{0}, Equations (9) provide the parametric equations of the trajectory of that fixed point on the rolling curve. We are now in a position to prove the following theorem.

Theorem 2: Let C_{0} be the parabola: $x^{2}=4 p y$ and $z=0$, where $p>0$ is constant, and let C_{θ} be the parabolic curve that θ - rolls along C_{θ}, where $0<\theta<2 \pi$ is fixed. If F is the focus of C_{θ}, then the trajectory of F is
(i) a branch of the hyperbola:
$\frac{z^{2}}{\sin ^{2} \theta}-\frac{x^{2}}{(1-\cos \theta)^{2}}=p^{2}$ in the plane: $y=p \cos \theta$, if $\theta \neq \pi$,
or
(ii) the directrix of C_{0}, if $\theta=\pi$.

Proof: Let L and R be the endpoints of the latus rectum of the rolling parabola, C_{θ}. Then

$$
\begin{align*}
F & =\frac{1}{2}(L+R) \\
& =\frac{1}{2}\left(\left[\begin{array}{l}
X(-2 p, t) \\
Y(-2 p, t) \\
Z(-2 p, t)
\end{array}\right]+\left[\begin{array}{c}
X(2 p, t) \\
Y(2 p, t) \\
Z(2 p, t)
\end{array}\right]\right) . \tag{10}
\end{align*}
$$

Using the formulas in (9), it can be shown that (10) simplifies to

$$
F=\left[\begin{array}{c}
\frac{t(1-\cos \theta)}{2} \\
p \cos \theta \\
\frac{\sqrt{4 p^{2}+t^{2}} \sin \theta}{2}
\end{array}\right],
$$

and, hence, parametric equations (x, y, z) for the trajectory of the focus of the rolling parabola are

$$
\begin{align*}
& x=\frac{t(1-\cos \theta)}{2} \tag{11}\\
& y=p \cos \theta \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
z=\frac{\sqrt{4 p^{2}+t^{2}} \sin \theta}{2} \tag{13}
\end{equation*}
$$

where $-\infty<t<\infty$ and $p>0$ and $0<\theta<2 \pi$ are constants. From (12), the trajectory of F lies in the plane: $y=p \cos \theta$. We now eliminate the parameter t from (11) and (13). From (11),

$$
\begin{equation*}
\frac{t}{2}=\frac{x}{1-\cos \theta} \Rightarrow \frac{t^{2}}{4}=\frac{x^{2}}{(1-\cos \theta)^{2}}, \tag{14}
\end{equation*}
$$

while from (13), we have

$$
\begin{equation*}
z=\sqrt{p^{2}+\frac{t^{2}}{4}} \sin \theta \quad \Rightarrow \quad \frac{z^{2}}{\sin ^{2} \theta}-p^{2}=\frac{t^{2}}{4}, \tag{15}
\end{equation*}
$$

, if $\theta \neq \pi$. From (14) and (15), we see that the trajectory of F is along a branch of the hyperbola

$$
\begin{equation*}
\frac{z^{2}}{\sin ^{2} \theta}-\frac{x^{2}}{(1-\cos \theta)^{2}}=p^{2} \tag{16}
\end{equation*}
$$

if $\theta \neq \pi$. More specifically, from (13) we see that it will be the top branch of (16), if $0<\theta<\pi$, and the bottom branch, if $\pi<\theta<2 \pi$. On the other hand, if $\theta=\pi$, then from (11), (12), and (13), the trajectory of the focus F is given by

$$
\begin{equation*}
x=t, y=-p, z=0, \tag{17}
\end{equation*}
$$

where $-\infty<t<\infty$ and $p>0$ is constant. The equations in (17) are, however, just parametric equations for the directrix of C_{0}. This completes the proof of Theorem 2.

Figure 2 below illustrates the result (with $\theta=\frac{\pi}{2}$).
FIGURE 2: Pi/2-Rolling of the Parabola $x^{n} 2=8 y$ Along Itself Together with the Hyperbolic Trajectory of its Animated Focus
(as viewed from the first octant)

In Figure 3 below, we view Figure 2 from a point on the negative y-axis.

FIGURE 3: Pi/2-Rolling of the Parabola $x^{n} 2=8 y$ Along Itself Together with the Hyperbolic Trajectory of its Animated Focus (as viewed from the negative y-axis)

In Figure 4 below, we view Figure 2 from a point on the positive z-axis.
FIGURE 4: Pi/2-Rolling of the Parabola $x^{n} 2=8 y$ Along Itself Together with the Hyperbolic Trajectory of its Animated Focus (as viewed from the positive z-axis)

Note: Not surprisingly, in Figure 4 the projection of the rolling parabola $C_{\pi / 2}$ into the $x y$-plane is (part of the) tangent line to C_{0} at the point P. In Figure 5 and Figure 6 below, we show the graphs of 17 trajectories of the foci (one being the directrix of C_{0}).

FIGURE 5: The Hyperbolic Trajectories of 17 Foci
When the Parabola: $x^{\wedge} 2=8 y$ and $z=0$ Theta-Rolls Along Itself

FIGURE 6: The Hyperbolic Trajectories of 17 Foci When the Parabola: $x^{\wedge} 2=8 y$ and $z=0$ Theta-Rolls Along Itself (as viewed from the positive z-axis)

Part III: Statement of an additional result

On February 23, I presented the paper, "Rolling a Parameterized Curve Along its Reflection," at the ArizMATYC Spring 2007 Meeting, at Glendale Community College. I now recognize that, within the framework of " θ - rolling," the contents of that paper are merely examples of " π - Rolling of a Planar Curve Along Itself." A main result from that paper (merely restated here) is:

Theorem 3: Let C_{0} be the ellipse having parametric equations

$$
x=f(s)=a \cos s, y=g(s)=b \sin s, z=0,
$$

where $0 \leq s \leq 2 \pi$, and a, b are constants, with $0<b<a$. Taking $\theta=\pi$, let C_{π} be the ellipse that " π - rolls" around C_{0}. If $f_{1}(-c, 0)$ and $f_{2}(c, 0)$ are the foci of C_{0}, then the foci of C_{π} are (initially) at $F_{1}=(2 a-c, 0)$ and $F_{2}=(2 a+c, 0)$, respectively. If C_{π} π - rolls around C_{0} (without sliding), the trajectories of the foci F_{1} and F_{2} of C_{π} are circles of radius $r=2 a$, centered at the foci f_{1} and f_{2}, respectively. Specifically,

$$
F_{1} \text { has trajectory: }(x+c)^{2}+y^{2}=4 a^{2} \text { and } F_{2} \text { has trajectory: }(x-c)^{2}+y^{2}=4 a^{2} .
$$

Figure 7 below (with $a=5$ and $b=3$) is an illustration of Theorem 3.

FIGURE 7: An Ellipse (with $a=5$ and $b=3$) Pi-Rolls Around Itself (Together with the Circular Trajectories of the Foci)

Final remarks

The theorems proved in this paper began, as do all theorems, as mere conjectures. But, whence these conjectures? They entered my mind as a result of posing the following graphical/animation problem: "How could I use my computer algebra system (Maple 10) to animate the θ - rolling of one curve along itself?" Having first solved the problem for $\theta=\pi$ ("rolling the reflection of a planar curve along itself"), then for $\theta=\frac{\pi}{2}$ ("orthogonal rolling of a planar curve along itself"), I finally solved the general problem for any value of $\theta, 0<\theta<2 \pi$ (Theorem 1). Having already been surprised at the fact that, when a parabola "orthogonally rolls" along itself, the trajectory of its focus is along the branch of a hyperbola, I decided to investigate what happens in the general case. I was amazed when I discovered that the same was true in general (Theorem 2)!

